Addendum to "Field Theory of the Two-Dimensional Ising Model: Equivalence to the Free Particle OneDimensional Dirac Equation"

Richard A. Ferrell ${ }^{1}$

Received August 15, 1973

An essential step in an earlier work ${ }^{(1)}$ is the disentanglement of the small operator \mathcal{O} from the large operator $2 J n$ in the expression $M=e^{2 J n+\mathscr{O}}$. Substituting Eq. (43) into Eq. (39) of Ref. 1, we can write the latter in the form

$$
\begin{equation*}
e^{-J n} M e^{-J n}=e^{-J n} e^{2 J n+\emptyset} e^{-J n}=1+[(\sinh 2 J) / 2 J] 0 \tag{69}
\end{equation*}
$$

If \mathcal{O} commuted with n, we would expect to obtain

$$
\begin{equation*}
e^{\mathscr{O}} \cong 1+\mathcal{O} \tag{70}
\end{equation*}
$$

to first order in \mathcal{O}. Thus the effect of the lack of commutativity is to introduce the correction factor $(\sinh 2 J) / 2 J$. For an isotropic lattice $(\sinh 2 J=1)$ the correction factor amounts to 1.13 , and ignoring it would lead to a 13% error. This kind of problem is familiar in the theory of Lie algebras ${ }^{(2,3)}$ and we will

[^0]give here an alternative derivation of the correction factor as an application of the well-known Campbell ${ }^{(4)}$-Baker ${ }^{(5)}$-Hausdorff ${ }^{(6)}$ (CBH) formula. Let $A=n, B=(1 / 2 J) \mathcal{O}, \lambda=2 J$, and
\[

$$
\begin{equation*}
F(\lambda)=e^{-\lambda A / 2} e^{\lambda(A+B)} e^{-\lambda A / 2} \tag{71}
\end{equation*}
$$

\]

From the general CBH formula we know that the general term in the Taylor expansion of $F(\lambda)$ can be expressed in terms of multiple commutators of A and B. But the fact that we are working only to the first order in B brings about a simplification which is most evident in the first derivative:

$$
\begin{align*}
F^{\prime}(\lambda)= & -\frac{1}{2} e^{-\lambda A / 2} A e^{\lambda(A+B)} e^{-\lambda A / 2}-\frac{1}{2} e^{-\lambda A / 2} e^{\lambda(A+B)} A e^{-\lambda A / 2} \\
& +\frac{1}{2} e^{-\lambda A / 2}(A+B) e^{\lambda(A+B)} e^{-\lambda A / 2}+\frac{1}{2} e^{-\lambda A / 2} e^{\lambda(A+B)}(A+B) e^{-\lambda A / 2} \\
= & \frac{1}{2} e^{-\lambda A / 2} B e^{\lambda(A+B)} e^{-\lambda A / 2}+\frac{1}{2} e^{-\lambda A / 2} e^{\lambda(A+B)} B e^{-\lambda A / 2} \\
\cong & \frac{1}{2} e^{-\lambda A / 2} B e^{\lambda A / 2}+\frac{1}{2} e^{\lambda A / 2} B e^{-\lambda A / 2} \tag{72}
\end{align*}
$$

This shows that $F^{\prime}(\lambda)$ is an even function of λ, so that only even terms appear in its Taylor series,

$$
\begin{equation*}
F^{\prime}(\lambda)=F^{\prime}(0)+\left(\lambda^{2} / 2!\right) F^{\prime \prime \prime}(0)+\left(\lambda^{4} / 4!\right) F^{v}(0)+\cdots \tag{73}
\end{equation*}
$$

with the coefficients given by

$$
\begin{align*}
& F^{\prime}(0)=B \tag{74a}\\
& F^{\prime \prime \prime}(0)=\frac{1}{4}[A,[A, B]] \tag{74b}\\
& F^{v}(0)=\frac{1}{16}[A,[A,[A,[A, B]]]] \tag{74c}
\end{align*}
$$

and so forth. Now a further simplification enters because of the special relationship of the operators A and $B . B$ creates or annihilates pairs, so that each commutation with A (the occupation number) gives the factor ± 2. Consequently all of the odd derivations are equal,

$$
\begin{equation*}
F^{\prime \prime \prime}(0)=F^{v}(0)=\cdots=B \tag{75}
\end{equation*}
$$

and as a result of this drastic simplification Eq. (73) can be summed to

$$
\begin{equation*}
F^{\prime}(\lambda)=B \cosh \lambda \tag{76}
\end{equation*}
$$

which can also be obtained directly from Eq. (72). Integrating with respect to λ, we find

$$
\begin{align*}
F(2 J) & =F(0)+\int_{0}^{2 J} F^{\prime}(\lambda) d \lambda=1+B \int_{0}^{2 J} \cosh \lambda d \lambda \\
& =1+B \sinh 2 J=1+[(\sinh 2 J) / 2 J] 0 \tag{77}
\end{align*}
$$

with the correction factor identical to that in Eq. (69).
In conclusion, the author wishes to thank Prof. C.-H. Woo for a provocative comment which prompted this alternative derivation.

REFERENCES

1. R. A. Ferrell, J. Stat. Phys. 8(3):265 (1973).
2. N. Jacobsen, Lie Algebras, Interscience Tracts No. 10, Wiley, New York (1962).
3. J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York (1965).
4. J. E. Campbell, Proc. London Math. Soc. $29: 14$ (1898).
5. H. F. Baker, Proc. London Math. Soc. (2) 3:24 (1905).
6. F. Hausdorff, Ber. Saechsischen Akad. Wiss. (Math. Phys. Kl.) Leipzig 58:19 (1906).

[^0]: ${ }^{1}$ Department of Physics and Astronomy, University of Maryland, College Park, Maryland.

