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An essential step in an earlier work (1) is the disentanglement of the small 
operator d7 from the large operator 2Jn in the expression M = e zJn+e. 
Substituting Eq. (43) into Eq. (39) of  Ref. 1, we can write the latter in the form 

e-g~Me-S'~ = e-S~egJ~+ee -J~ = 1 + [(sinh 2J)/2J](_O (69) 

I f  @ commuted with n, we would expect to obtain 

e e =~ 1 + 0 (70) 

to first order in dT. Thus the effect of  the lack of commutativity is to introduce 
the correction factor (sinh 2J)/2J.  For  an isotropic lattice (sinh 2J  = 1) the 
correction factor amounts to 1.13, and ignoring it would lead to a 137o error. 
This kind of  problem is familiar in the theory of Lie algebras (g,a) and we will 
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give here an alternative derivation of the correction factor as an application 
of the well-known Campbell(4)-BakerCa)-Hausdorff(6) (CBH) formula. Let 
A = n, B = (1/2J)(9, h = 2J, and 

F(;~) --- e -  ~A/2e~(A + B)e- XA/2 (71) 

From the general CBH formula we know that the general term in the Taylor 
expansion of F()t) can be expressed in terms of multiple commutators of  A 
and B. But the fact that we are working only to the first order in B brings 
about  a simplification which is most evident in the first derivative: 

F'(A) = --�89 -aA/2 -- �89 -aA/2 

+ �89 + B)ea(A+B)e -aA/2 + �89 + B)e -aA/~ 

-..= �89 - ;~AI2Be h(A + B ) e -  hA/2 "JI- � 89  - AAI2e;~(A + B)Be- hAl2 

�89 aAt2 + �89 (72) 

This shows that F'(A) is an even function of A, so that only even terms 
appear in its Taylor series, 

F'Q,) = F'(0) + (),:/2!)F"(0) + (A4/4l)fv(0) + ..- (73) 

with the coefficients given by 

F'(0) = B (74a) 

V"(0) = �88 [A, B]] (74b) 

FV(0) -=- -~Xa[A, [A, [A, [A, B]]]] (74c) 

and so forth. Now a further simplification enters because of the special 
relationship of the operators A and B. B creates or annihilates pairs, so that 
each commutat ion with A (the occupation number) gives the factor + 2. 
Consequently all of the odd derivations are equal, 

F ' (0)  = rv(0) . . . . .  B (75) 

and as a result of  this drastic simplification Eq. (73) can be summed to 

F'(;~) = B cosh ;~ (76) 

which can also be obtained directly from Eq. (72). Integrating with respect 
to ~,, we find 

F(2J)  = F(0) + F'(,~) dA = 1 + B cosh )~ d)t 
r  

= 1 + B sinh 2J  = 1 + [(sinh 2J)/2J](9 (77) 

with the correction factor identical to that in Eq. (69). 
In conclusion, the author wishes to thank Prof. C.-H. Woo for a provoca- 

tive comment  which prompted this alternative derivation. 
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